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SECTION II.—GENERAL METEOROLOGY.

REPORT ON MODES OF AIR MOTION AND THE EQUA-
TIONS OF THE GENERAL CIRCULATION OF THE EARTH'S
ATMOSPHERE.

By GEORGE PorTER PAINE.
[Dated: University of Wisconsin, Madison, Wis., July 31, 1918.)

The object of the present investigation is to classify
and to analyze fundamental modes of air motion and
to ascertain some of the mathematical laws governing
general circulation, a particular mode of motion in the
earth’s atmosphere.

The problems under consideration had their origin in
the experiments of Oshourne Reynolds (19-22),) who
demonstrated that the mean drift of a liquid in turbulent
motion does not obey the laws expressed by the standard
hydrodynamical equations. These equations are de-
rived for the detailed motion of fluid elements under the
assumption that the velocities and their space deriva-
tives are so small that their powers and products may be
neglected (73, p. 554). eynolds obtained modified
h ﬁrodynamical equations expressing the average drift
of the liquid, not in terms of the turbulent motion,?
but in terms of mean values of functions of the deviations
of the velocities of the fluid elements from the velocity
of the average drift. These equations are open to the
serious objection that they are obtained by applying the
standard Lydrodynamica equations to the detailed tur-
bulent motions of the fluid elements, which motions in
practice do not satisfy the conditions just stated upon
Whi:ih the validity of the hydrodynamical equations de-
pends.

Clerk Maxwell (91, p. 81) demonstrated that, under
certain conditions, the classical hydrodynamical equa-
tions expressed the laws governing the mass motion of
a gas. Recent experiments ® with the flow of gases in wide
tubes and empirical studies of surface wind data * have
shown that these equations not only fail to express the
laws governing the turbulent flow of liquids but they
also fail to express the laws governing the turbulent drift
of the winds.

The reason for this apparent failure of the Kinetic The-
ory of Gases to account for observed air motions is to be
found in the fact that the classical equations apply to the
instantaneous air drift out of one fixed, microscopic vol-
ume element into another, while the motions that actually
come under observation are in general of another and
fundamentally different mode.

With a view to removing this difficulty, air motions
are classified in the following pages in terms of mass mo-
tion, molecular motion, winds, and turbulence. Winds
are classified with reference to their order, and turbulent
motions; with reference to their order and to their kind.

Mathematical expressions for mass motion and for
molecular motion are already available from the standard
Kinetic Theory of Gases, but, strange as it may seem, no
attempt appears .to have yet been made to formulate
mathematical expressions descriptive of winds and of

1 NoTE.—Relerences are denoted by their serial number in the bibliography at the

end of this gn‘per.
2 See definition, p. 315.
§ See rolsrences cited relative to kinetic turbulence, p. 315.

170,84, 75, 72, 94, 95, 99.

turbulent motion. In other words, no definitions of these
fundamentally important modes of motion have been
yroposed which possess a degree of precision sufficient
or the application of the methods of Mathematical
Physics to ttm study of the circulation of the atmosphere.

inds have accordingly been defined with precision
in the present article in terms of multiple mean-valne
integrﬂ.lls). These integrals are built up from certain fuu-
damental concepts of classical gas theory. The idea of
wind order is suggested immediately by this definition,
and the quantitative definitions of turbulence and of
orders of turbulence grow out of the integral expressions
for winds and the idea of wind order.

These definitions, on the one hand, are expressed in
terms of Mathematical Analysis. On the other hand,
they describe with precision observed phenomena as
yielded by instrumental observations.

Having set u}) these ‘analytical definitions of funda-
mental modes of air motion and established their corre-
spondence to observed phenomena, it is here shown that
equations for the winds of the general circulation follow
as an extension of the classical Kinetic Theory of Gases.

Mass mot'ion.——Conﬁning the present investigation to
the motions of the earth’s atmosphere below about 80
kilometers elevation (101, pp. 1-29), we have to deal with
an aggregation ot molecuie_s, chiefly of two kinds—nitro-
éen and oxygen. According to the Kinetic Theory of

ases, each one of these molecules describes s rectilinear
free path with uniform velocity, until it encounters one
or more neighboring molecules, when it starts off in a new
direction at a different speed. For example, at 0° C. and
under a pressure of one atmosphere the number of mole-
cules in one cubic centimeter of air is about 2.75x 10",
The mean ]eng h of the free paths is about 1.42 X 10-*
cm. At 15° C,, the mean velocity of the molecules is
about 459 meters per second, and the range of velocities
represented at any instant by the individual molecules is
very great. The number of encounters per second in one
cubic centimeter is of the order of 1.64 X 102,

To investigate the motion of this complicated dy-
namical system, it is usual to regard the space occupied
b{ the air as divided into a great number of cells.
These cells are fixed in space and are small compared
with the total volume occupied by the gas. A typical
cell is chosen as a region for investigation. At a given
instant the velocity of each of the swarm of molecules
then occupying the cell is supposed to be ascertained.
The numerical mean of all these velocities is then com-
puted, and the result is a measure of the tendency of
the molecules to drift collectively out of one cell into
another. In other words, the numerical mean measures
the mass motion of the gas in the cell.

Evidently the character of the mass motion corre-
sponding to a iiven state of motion of the molecules

epends upon the size arbitrarily assigned to the fixed
cells. If wo suppose the cells all alike, and denote their
common volume by dr, then dr should satisfy the
following conditions: .

(a) It should be large compared with the mean free
path of the molecules.
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(3) It should be so small that the molecular density

is practically uniform throughout each cell.

he position of any of one these microscopic cells, or
volume elements, may be indicated by the -coordinates
of its middle point P. We shall refer to the mass
motion in this cell as the mass motion at point P.

The temperature and the hydrostatic pressure of
classical gas theory are essentially numerical means
computed for the molecules occupying a specified cell
at a given time; and molecular density is explicitly
defined as the number of molecules in the cell under
consideration, divided by its volume. The temperature,
the hydrostatic pressure, and the density of the atmos-
phere may therefore be regarded as phases of mass
motion.

Integral exlpress'ions Jor mass motion."—In terms of
Mathematical Analysis, the mass motion of a gas can
be described with J)recision. Let z, y, and z be the
coordinates, referred to fixed axes, of a point within a
fixed volume element dr, and let » (z, y, 2, ¢) be the
molecular density in this element at a given instant ¢.
Imagine the velocity diagram of the Kinetic Theory of
Gases constructed for all the molecules in dr at the
instant ¢&. The molecular velocities in dr are supposed
to vary from molecule to molecule through all possible
values. It is usual in works on the Kinetic Theory of
Gases to select from the molecules in dr at instant ¢ all
those whose velocities lie in a range

w and w+du
v and v+dv]----------------(A)
w and w+dw

which molecules we shall designate as molecules of class
A, and to define a function _%l(lu-, v, w, %, ¥, 2, t) as such
that the number of molecules of class A in dr, at instant
t, 18
v @9, 20 f (U9, wYyet)dodr..____(1)
where
do =dudvdw

and is the volume element corresponding to class A in
the velocity diagram. If u, v, and w are the velocity
components of an individual molecule in a cell whose
center is P (z, y, 2), and if ¢ (u, v, w) is a function depend-
ing on them,® then, with the aid of the foregoing defini-
tion, the numerical mean of ¢ for all the molecules in the
volume element dr may be expressed by the relation

o= ;é;zw fdwdr

where the summation is effected for the velocities of all

the molecules in dr. Approximately,

1 [+ +o0

Po=7 j: sg:fdwdr = j: <°o°f do. e (2)
Thus, for example, the z-component of the velocity of mass
motion 18
+c0
Uy = f ufde
-0

A numerical mean is in general a function of the time.

§ For the sake of brevity, the expressions here given apply to a single gas. The
e: however, be extended to apply to a mixture of pseg nyvlng dlﬂegentg?noleclunyr
§ K'or example, 43, or uv or uvt.
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. Molecular motion.—Deviations of the motions of indi-
vidual molecules from the mass motion give rise to
another mode of motion. Let u, v and w be the velocity
components of an individual molecule in a fixed volume
element dr at the instant £, and let u, v, and w, be
the numerical means of the corresponding velocity com-
ponents of all the molecules in that cell at the same
mnstant; then the velocity whose components are U, V
and W which is defined by the relations

U=+ U, v=01+V, w=w,+ W_.__......(3)

is called the molecular velocity of the molecule under
consideration.

Mean-value properties of mass motion.—If ¢ of equation
(2) is now set successively equal to u, v, and w, then the
resulting numerical means are equal respectively to the
velocity components of the mass motion of the gas.
Considerable information regarding these means is avail-
able from the Kinetic Theory of Gases. For example, in
the integral

<¢o)o=f_§°3dw----------------(4)

the summation is effected for all the molecules in the
volume element dr. But ¢, is the same for all the mole-
cules in dr, hence?

(@o)o=es ;;§G=¢o cemececcanaaa-(5)

From this relation and (3), we have

U=V=Wo=0_.............(6)
consequently
(uz)o'_“'u’o'l"(m)o
(W) =v%+ (V?) S ()
(""‘7z)o=‘wzo'|'(w2 (1
and
(uv)o=uo'vo+(UV)o
(vw)o=vowo+(VW)o ------------(8)

(wu)o =wouo+ (W),

Assuming, as a first approximation, that the law of
equipartition of energy

(Do=(V)o= (W ... ... 9

holds for the molecules which at any instant are in a
given volume element dr, it can be shown that in dr,

__k(OU, , OU
(UV)o—_—p('S:E'i' by

k(Ow, , OV,
(VW)0=—;(a_y 3z

x{OU, 0w,
(WD), p\ Oz + 3%
where « corresponds to the viscosity coefficient of the
Theory of Continuous Media, and p is the volume density
of the gas.
It should be observed that the assumption of the law
of equipartition of energy applies here to deviations from

SRR ¢ (1)

+o0
7 The total number of molecules in dr is»dr | fdw: but the total number is also glven
-—00

400
by »dr; hence ffdﬁ-l.
-0
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numerical averages taken.over any one of the very small
volume elements under consideration, and not to devia-
tions from numerical averages taken over large masses of
the atmosphere.

The hydrostatic pressure p of the gas is defined as

P=5(T+ Vit Whoooeeoeeeee (11)
and the temperature T is given by the equation
Ty (P4 Vit Wi oo (12)

in which H is the constant of the characteristic equation
of the gas.
The equations of mass motion.—In the Kinetic Theory
of Gases, it is also shown that by means of a study of the
flux of matter, of momentum, and of kinetic energy, as
governed by the fundamental laws of dynamics, a system
of equations may be deduced for the mass motion of a
gas. The results depend on the foregoing mean value
properties of mass motion.
he dynamical equations.*—The analytical statement of
the law of conservation of matter takes the form of the
equation of continwity:

_a_l_’ a(puo) a(on) a(ﬂwo)

2T oz Ty T oz

and the law of conservation of momentum is expressed
by the three momentum equations:®

=0_......(13)

du, 10p , € 06,

G =X st oy el

dv, 10p, €06,

_dt_— Y—'p—a—y‘l’s ay+€A'U° ........ (14)
dw, Z 10p , € 0,

&=L 0T 50 TeAWe

The thermodynamical equations.—The characteristic equa-

tion of the gas is
p=pHT _._ .. _......__(1B)

Finally, the law of conservation of energy yields the
energy equation:

¢ 1 ar €
;AT+~;G=C.;7{+§C~9°+—W-- -----(16).

8 First derived from gas theory considerations by Maxwell, see 91, p. 81.

® Notation.—(X, Y, Z) is the resultant of the body forces unit mass.
T'is the temperature, measured on the absolite scale.

.82, 2, 3 2
ot Hiogg T oopyt o5,

a.,-%%‘-'+-a-ﬂ’+a—:"£. which is analogous to the time rate of cubical

dilitation in the case of the motion of a continuous medium,
J2 92 0
A'&*W*Sﬁ' the Laplacian operator.
x is analogous to the viscosity coefficient of & continuous medium.
¢ is the coefficient of conduction of heat for the gas.
¢y is the specific heat of the gas at constant volume,
H s the gas constant in the characteristic equation of the gas,
J is the mechanical equivalent of heat.
L]

»
@ is the gain in energy per unit volume due to absorption and emis-
sion of radiation.

2,1 o0, , Do\ 3, {Wo, DU\ 2 Wo%)’]
w3 [(55) " Grra) + (B

[ () (2) (BT
which is twice Btokes’ dissipative function for a continuous medium.
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Space derivatives of the temperature and of the velocities.—
Very little is now known regarding the magnitudes of the
space derivatives of the temperature and of the velocities
of the mass motion of the earth’s atmosphere, as com-

ared with the magnitudes of the ‘“gradient’’ and body
This much,
however, seems certain, that for mass motion in the
neighborhood of an obstacle or near the ground where
cross currents and eddies prevail, these derivatives may
be relatively large, and hence by no means negligible for
purposes of approximation.

Mass motion and observed phenomena.—The validity of
equations (14), in so far as tﬁey express the laws govern-
ing lamellar (nonturbulent) gas motions, has been abun-
dantly established by experimentation.!* At the same
time, observation and experiment have demonstrated
that they fail to express the laws governing those turbu-
lent, eddying, tumultuous motions characteristic of the
circulation of the atmosphere.'

Notwithstanding this notable failure, the mathematical
investigation of air motions had not been extended
beyonci: the foregoing classical analysis of mass motion
until, through the researches leading to the present report,
it became evident that the apparent breakdown of the
equations of mass motion was due to the fact that, on the
one hand, the mass motion of the atmosphere can not
generally be observed by ordinary methods, and, on the
other hand, the modes of motion actually observed and
recorded by the Government observers and others are not
mass motions but #ime means of mass motions, averaged
over intervals ranging from a few seconds to a long period
of years.
f%vidence of this fundamental and important fact will
be brought forward in the course of the ensuing discussion
of winds and turbulence. Meanwhile, we proceed to the
following analytical definition of & wind.

Defimation of a wind.—Let ¢, be any one of the mass
motion variables 4, v,, W, P, p, or T, and let T be a fixed,
definite interval of time. ’i: en the time mean of ¢, ex-
tended over the interval T is given by

1 [T
¢o=f ?odt LT PR EE -(17)
T3
If ¢, is one of the velocity components u,, %0, Or w,, then
the time mean takes the form of the double mean-value
integral

4+

~ 1f:+tl2f )
¢0=I 2 _(e”f Lo] t_---.------.(18)

The collective mean-value phenomena of velocity, pres-
sure, temperature, and density, as defined by relations
(17) and (18), will be said to constitute a wind of order ¥.

Observed phenomena and the integral expressions for a
wind.—The classical Kinetic Theory of Gases, as we have
seen, treats of mass motion and the molecular motion
accompanying it, and it has in general been tacitly
assumed that observations made in the ordinary way
with standard meteorological instruments represent the
mass motion of the air. But this assumption clearly does
not accord with the facts. An ideal anemometer, for

10 The *“gradient” force is the force per unit mass whose components are given b
the pressure terms of equations (14). ‘The body forces (X, Y, Z) of equations (1
are the forces per unit mass due to gravitational and electromagnetic fields existing
in the region occupied by the atmosphere.

1 See, for example, 62, 63, 64, 65, 66, 67, 68, 69, 96.

170,91, 72, 6, 12. .
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example, so minute as to be contained in one of the
elementary cells dr (see p. 311), so designed as to set up
no extraneous disturbances, and so sensitive as to respond
instantly to the most rapid or minute fluctuations of the
air, would measure the air drift in the cell dr, that is to
say, (t21;e velocity of the mass motion as defined by equa-
tion (2).

The standard Robinson anemometer occupies a rela-
tively large space, it sets up eddies and cross currents in
its neighborhood, it fails to respond to rapid or minute
fluctuations of the air (I, 100, 61), and its moment of
inertia is so large that, on gusty days, it constantly lags
or overruns.

Only approximately, therefore, does the frequency of
revolution of the whirling cups indicate the true mass
motion which, if the anemometer were removed, the air
would have in the cell dr at the center of the instrument.

In practice, however, the detailed frequency variations
of the instrument are not ascertained. The data are
obtained by counting the number of notches appearing
per sgeciﬁed time upon the record sheet.

Subject, then, to errors due to (a) the large size of the
instrument, (b) the disturbances which it sets up, (c) its
failure to respond to rapid and minute fluctuations, and
(@) its tendency to lag during sudden gusts and to overrun
during sudden calms, actual readings of the anemometer
indicate for specified values of T, time means of the mass
motion of the air in the neighborhood of the instrument,
in the sense denoted by the multiple mean value in-
tegral (18).

hen the air is in motion, the conditions are very
much the same in the case of the standard thermometer.
An ideal, microscopic thermometer, suspended in a
cell dr, creating no extraneous disturbances, and quick
and sensitive enough to yield readings proFortiona.l to
the most rapid and minute variations of the mean
kinetic energy of the molecular motion in that cell,
would register the temperature of the air as defined by
equation (12). _

The lar%:a size of the standard thermometer compared
with dr, the eddies it sets up, its sluggish reactions and
its inability to respond to minute temperature varia-
tions (2) must greatly impair the accuracy with which
the variations of the instrument indicate the actual
fluctuations of the temperature.

Unlike the anemometer, the thermometer yields, from
a single reading, not a definite time mean, but a time
mean corresponding tosome indeterminate and unspecified
value of T, varying from reading to reading, and depend-
ing partly on the reaction constants of the instrument,
and partly on the observer.

en mean temperatures are obtained by averaging
such readings over fixed, definite, and specified values
of T (daily means, annual means, etc.) then, subject to
the errors described, they yield the wind temperatures
defined by the integral expression (17).

It is essential to observe that instrumental errors in
wind, velocity and temperature, due to the causes enumer-
ated, pertain to the mass motion of classical gas theory
and not to the time means discussed in this paper. The
latter can be computed with precision.?*

The dependence of winds corresponding to a given mass
motion upon the values assigned to T.—Kifteen readings
of a Robinson anemometer, at Madison, Wis., on August
26, 1897, are represented in figure 1. The velocities
having been obtained by counting the number of notches

13 T;:zel. dynamical significance of tho barometer is briefly discussed in footnote to
page
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appearing per hour on the record sheet, the interval T
for these observations was one hour. Figure 2 shows the
wind velocity at the same station, but averaged for each
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F1a. 1.—Wind velocity at Madison, Wis., August 28, 1897. T=1 hour.
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month of the year 1897, twelve mean values for which &
was one month. The yearly mean wind velocities for the
years 1894 to 1903, inclusive, are shown in figure 3. In
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F16. 2.—Wind velocity at Madison, Wis., during 1897. Te1 month.

this case T was one year, each mean having been com-
suted from data obtained during the interval between

anuary 1 and December 31 of the year under considera-
tion. Ten mean values are plotted in figure 4, for which
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¢ was thirty years; that is to say, the mean wind velocity
w as found from anemometer readings extending fifteen
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Fi6. 3.—Wind velocity at Madison, Wis., 1804-1903. Tw=1 year.

years before and after the year for which the mean
was computed.!
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F16. 4.—~Wind velocity at Madison, Wis., 1894-1908. T30 years.

For purposes of comparison, these four graphs should be
drawn to the same scale. Thus, for example, if varia-
tions of the type shown in figure 1 were plotted to the
scale of figures 3 and 4 over the entire period of ten years,
the resulting graph would have the appearance of a con-
tinuous band nearly seventeen unils broad. The extreme
mutual divergence of these winds is apparent.

Unfortunately, wind direction data, as now recorded,
do not afford material for the construction of stream-line
charts for winds in the sense in which that term is here
used. At the same time, it is unquestionably true that
stream lines, like velocities, exhibit a fundamental differ-
ence in the character of the winds corresponding to the
same mass motion but to different values of <.

. The same phenomenon is observable in atmospheric
temperatures and pressures (2). L.

It may therefore be stated as a general principle, that
the character of a wind corresponding to a given mass
motion is, in general, profoundly affected by the value
arbitrarily assigned to the time interval T.

" "From this principle it follows that no specific problem
in wind motion can be regarded as formulated, unless the
order of the wind under consideration be explicitly
defined. . .

® Turbulent motion.—It will be observed that in tak-
ing the monthly averages for f(ilgure 2, the charac-
teristic i larities of the wind velocities of figure
1 are largely smoothed out; and that in taking the
yearly averages for figure 3, not only the character-
istic “irregularities of the wind velocities of figure 1,
but those of figure 2 are smoothed out also. The
averaging process correspondinf% to figure 4, for which
¢ was thirty years, had the effect of practically oblit-
erating all irregularities, so that the graph appears as
a straight line nearly parallel to the axis of abscissas.’®
The situation is in- general the same relative to pressure
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curves, stream lines, etc. There are cases, however,
where the mean motion does not change with . If, for
example, the wick of a kerosene lamp be adjusted to
glilve a steady flame without smoking, stream lines in
the chimney for five-minute averages differ very little
from stream lines for five-second averages. But when
the motions differ for different values of T, it i1s essen-
tial to distinguish clearly between them. This can be ac-
complished analytically by means of the two following
definitions.

(@) A wind of order T may be described in terms of
time curves representing the velocity, pressure, tempera-
ture and density at a single station during a given period
of time; or else by a weather map showing stream lines,
isobars, isotherms and lines of constant density drawn
over a given region for a single instant of time.

(b) Given an air mass, the molecules of which are
in a given state of motion M. Suppose that a
{s::a%]fl:;m&:;rves} S be constructed representing the
motion M for time means extended over an interval
¢. If another {f’::a%i é,:_nrxsacrz)urv es} S, be constructed rep-
resenting the motion M, but for time means extended over

a shorter interval ,, then, provided the {gl::;es} S, be

different from the {f::;'v 1S, the motion S, will be said

to be turbulent relative to the motion S.
Turbulence of different orders.—The order n of the tur-
bulent motion S, relative to S will be defined as

neX
T,
Figure 2, for example, shows turbulence of order 12 rela-
tive to the wind defined for annual means. Figure 1
shows turbulence of order 8,760 relative to the wind
defined for annual means, and of order 262,800 relative
to the wind defined for 30 year means.

Kinetic turbulence.—Let us return to the illustration of
the kerosene lamp. By properly adjusting the flame,
stream lines for half second averages can be made smooth;
in which case the draft is goog, and the lamp burns
without smoking. Turn the wick up, and the draft, or
wind, is accelerated, until what seems a critical velocity
is attained, at which the stream lines become unstable,
winding themselves into a tangle revealed by spirally
curling smoke jets due to imperfect combustion. The
imperfect combustion is in turn due to decreased draft,
some of the kinetic wind energy having gone into the pro-
duction of turbulence.

A great deal of experimental work has been done on
turbulence of this kind, in both liquids and gases. Some
of the testimony relative to critical velocities is conflict-
ing, and the character of the stream lines and the origin
of the motion itself are little understood.!®

The first researches in kinetic turbulence seem to have
been made in 1883 by Oshourne Reynolds (19-22), whose
notable experiments with liquids revealed clearly the
complicate(s) character of the secondary stream lines
often associated with a general drift or mean motion.
For slow motions, the stream lines indicated the well-
known Poisuille régime (18); but mean motion accelera-
tions led to more or less abrupt appearances of exceed-
ingly complex stream-line configurations which, super-

eeccmemeeaeae-.-(18a)

1 See formula ( 13. .
18 The apparent slope of the curve of fig. 4 is discussed on p. 317, note 24.

162, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12; 13, No. 3; 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26;
93. p, 776; 94, 95, 99, 103.
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posed on the general drift, absorbed much of its kinetic
energy. _

Much stress was laid by Reynolds on the abruptness
of the transition from the Poisuille régime to turbulent
motion, but more recent researches, in particular those
of Ekman (5) in 1907, seem to indicate that those changes,
occurring at certain ‘‘critical velocities,”” were due to
fortuitous disturbances set up by the apparatus. 'This,
however, is of secondary importance. \K’hat Reynolds
demonstrated was that, except in the case of slow motions,
the general drift defined by time means was accompanied
by superimposed turbulence, and that the former was
profoundly affected by the latter. From the point of
view of the present paper, Reynolds’s turbulence was a
mean motion corresponding to a value of T considerably
less than the order of the general drift.

In gases, related phenomena have been studied experi-
mentally by Becker (1907), Fry and Tyndall (1911),
Dowling (1912), Kohlrausch (1914), Zemplén (1912),
and others. The experiments of Kohlrausch (12) are
of particular interest, as showing clearly a deep-seated
retarding influence at work after the transition from the
Poisuille to the turbulent régime.

A large proportion of experimentation in air turbulence
has been confined to the investigation of critical velocities,
several of which have sometimes been observed in con-
nection with a single type of apparatus. Zemplén’s
(25, p. 71) experiments with spherical gas layers have,
however, indicated that the abrupt appearance of tur-
bulence upon the attainment of certain critical velocitios
was probably due to disturbances set up by the ends of
the tubes through which the gas was driven.

Varied and in some respects conflicting as the data seem
to be, the following generalizations seemn to have becn
empirically established. (¢) Turbulence of the kind
under consideration appears in the neighborhood of
obstacles, material boundaries and surfaces of discon-
tinuity, and in ﬁeneml where high differential velocities
exist between adjacent fluid strata. (b) It may appear
where the material boundaries and the adjacent Huid
strata are at the same temperature. (¢) A wind of
order T is in general modified profoundly by the occur-
rence of superimposed gusts, cross currents, and eddies—
turbulent motions relative to T. In particular, a turbu-
lent wind does not obey the laws expressed by equations
(13) to (16) governing the mass motion of the gas.” On
account of tﬁe first two of the foregoing generalizations,
the kind of turbulence under consideration will be referred
to as kinetic turbulence.’®

Theresults stated in thelast paragraphhavebeen derived
from observation and experiment. Reynolds and Lorentz
(19-22), (13) have shown from theoretical considerations
why thehydrodynamical equationsdonot govern the mean
motion, or average drift, of a turbulent liquid. In the
present paper it is shown from theoretical considerations
why the equations of mass motion (13) to (16) do not
govern a turbulent wind, defined for large values of T.

Convective turbulence.—A stream of water at 20°C. and
flowing rapidly down an inclined iron trough at the same
temperature, will exhibit turbulence relative to a general
drift corresponding, say, to hourly means. If the tem-
perature of the trough be sufficiently increased, the water

17 See 19-22, 13, 8, 71, 72, and standard works dealing with the flow of fluids throngh
pipes, welrs, canals, ete.

18 Reglons of turbulence in the atmosphere are sometimes bounded by surfaces along
which the wind is discontinuous. Some of the more important memoirs relating to
surfaces of discontinuity are the following, arranged here in cbronological order: 53,

. 310; 52, 39, 46, 50, 55; 43, p. 146: 28, 40, 41, 42, 38, 48, 45, 27, 49, 29, 47, 30, 54, 31, 32, 33,

, 44, 35, 37, 36, 51, 89, 104, Reference 92, p. 107, is of {nterest in connection with 45.
‘An admirable summary and extensions of the theory are contained in 98.
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will boil as it descends, and the turbulence will thus be
enormously complicated by the appearance of a new type
of stream-line irregularities. Such irregularities, which
are due to temperature differences between material
boundaries and their adjacent fluid strata, occur in the
lower layers of the atmosphere and operate powerfully to
modify atmospheric stream lines. On a fair summer day
the Frocess is generally visible. During the morning, the
earth becomes hotter than the adjacent air, and heat is
conducted from the ground to the lowest air stratum.
The resulting vertical instability manifests itself in mul-
titudinous fﬁckering jets rising from the ground. Al-

. though these jets are visible only to the height of a few

feet, the appearance of cumulous clouds bears witness to
the fact that the jets are uniting into massive convection
columns which are driven upward to an altitude of per-
haps a mile. The structure of higher order surface winds
is profoundly complicated by these enormous air columns
cutting across their lines of flow. Relatively lacking in
momentum, the ascending masses mix with the currents
of the upper air, while irregular downward draughts,
replacing the thermally driven masses and transmitting
horizontal momentum from the upper air currents to the
surface layers, unite into a wind of higher order near the
ground, which, making itself first felt in the morning,
attains a maximum velocity during the day, and disap-
pears during the late hours of the afternoon.!®

This mode of motion, convective turbulence, is character-
istic of regions where the material boundaries and the
adjacent air strata are at different temperatures. It
accordingly differs essentially from kinetic turbulence
with regard to its origin; possibly also with regard to
characteristic stream-line configurations.

Combined cffects of kinetic and convective turbulence.—
Fair weather convection, as we have seen, affords an illus-
tration of convective turbulence relative, for example,
to a wind defined for daily averages. Local thunder-
storms furnish another example. Both, of course, are
complicated by the action of water vapor. The HIGHS
and ows of the duaily weather maps reveal turbulence
relative to monthly and yearly means. Some of these
disturbances, like the Arizona Low of the summer months,
belong clearly, at least in their incipient stages, to the
convective class. Others seem to be purely kinetic in
their origin. The fitful and intermittent gusts of the sub-
stratosphere ?® are doubtless of the same character. Prob-
ably most of the turbulence phenomena (relative to yearly
means) depicted on the daily weather maps are resultants
of both kinds of turbulent motion. In fact it is by no
means possible in atmospheric phenomena near the ground
to distinguish between irregularities of the two sorts.
Observational studies of turbulence in the lower layers of
the atmosphere unquestionably pertain to a mixture of
the two. Lilienthal’s (61, p. 77) studies carried on with
vertical recording systems of parallel wind vanes revealed
marked turbulence in winds of order ranging from three to
six seconds. It was found that winds in passing over a
wood or a hill sent great eddies upward. e pronounced
and almost abrupt upward motions usually seen to ac-
company the mean drift of smoke jets from tall, isolated
factory chimneys were shown to be due, not to the heated
condition of the escaping gases, but to characteristic up-
ward irregularities of wind motion near the ground.
Similar phenomena were observed and studied by Lang-
ley (1), whose measurements with sensitive, light-weight
anemometers revealed marked turbulence in winds defined

19 See 102 and 99 on the diurnal variation of the wind.
2056, p. 165; 57, p. 214; 58, p. 153; §9, p. 28; 60.
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for T-intervals of from four to ten minutes. Barkow (2;
see also 90) showed that turbulence of the same order
reveals itself in temperature and pressure graphs. But
in the results of observation there is generally little or
nothing to enable one to distinguish between kinetic and
convective turbulence. Near the earth the two phe-
nomena combine to the extent that the atmosphere has
well been called a ‘‘treacherous sea,” where irregular
cross currents and eddies, violent swirls and sudden side
gusts prevail .

That the two kinds of turbulence are, however, essen-
tially different seems to be indicated by the form of the
equations of general circulation (45) to (50).

Mean value properties of winds.—Let a represent any
one of the six mass motion variahies u,, v,, W,, », p and T.
Deviations of the mass motion a * in any volume element
dr from a wind due to o and defined in terms of an
interval T # are given by the relation

* a=a+ oo ..... -..'.---__-(19)

As was pointed out in the discussion of turbulent
motion, the larger the value of T, the more nearly the corre-
sponding wind approximates a state defined by the relation

Oa
5t 0 (20)
This %t:,nera.l rinciple is assumed here as a fundamental
hypothesis. It is well illustrated by the wind velocities
represented in figures 1 to 4. The great irregularities
shown in figures 1, 2, and 3 disappear in figure 4, which
is in fact a straight line, approximately parallel to the
time axis.* Figure 4 therefore indicates that the mean
velocity for 30-year averages satisfies relation (20)
throughout the 10-year interval represented.

This relation is a sufficient condition for a steady state

of the mean motion «. But this is by no means tanta-
mount to saying that the wind thus defined is a steady
wind, as that term is ordinarily used. Quite the con-
trary. winds of 30-year order are in general turbulent.
Shorter T-intervals for the same mass motion, as illus-
trated in figures 1, 2, and 3, yield vortices and cross
currents due to obstacles, convectional swirls and ascend-
ing air columns, cyclonic storms and anticyclones and
a.nﬁost of other irregula,rities, all unsteady in the extreme.

Proceeding therefore from the fundamental hypothesis

(20) one finds that, for sufficiently long values of T,
=G eaeaeenn(21)
hence by (19)
@ =0 (22)

21 Rotch and Palmer (100, p. 44) observed, in a 33-mile wind,veloaity fluctuations
which were between 15 and 75 miles per hour, #Including a succession of minor oscilla-
tions, somo lasting only a few seconds. As many asten pulsations in pressure persecond
have been noted In these rapid gusts.”

22 See equatlon (2).

8 See equations (17) and (18).

 The apparent velocﬂ‘.{ decrease in fig. 4 of a little over 1 per cent, during the 10-year
interval, was doubtless due in part to changes in exposure of the anemometer, and in
part to the gradusl erection of buildings near the Weather Burean station. The instru-
ment was located on the roof of Brown’s Block from 1878 to 1883, where the e ure was

bably uniform in all directions. In 1883 it was transferred to a position 71 feet distant

ﬂ‘rgm the dome of the Washburn Observatory, and in the lee of the dome for westerly
winds. In 1904 the instrument was installed on the roof of North Hall. At that time,
at least two buildings in the neighborhood of the station presented obstructions from the
East and Southwest, respectively. Since then, extensive additions have been made to
these bnfldings, and several new buil
progressive ase of the number and s!
aunemometer appears to account for the apparent 1 per cent decrease o

have been erected close to the station. This
of obstructions in the nei(ghborhood of the
the velocity.
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Moreover, if @ and @ represent any two of the six mass
motion variables, then

@B=aB o e . (23)
and L

B =0 e .. (24)
Evidently '

da mx

D - OF e --(25)

Making use of (23) and (24), we have from (19) the
relation

aB=af+a'B e ....(26)

and, in particular, that

cmmmmeen oo == (28)

............... }---.--_---- --(29)

General circulation.—In what follows, the term general
circulation will be used to denote winds of order suffi-
ciently large to satisfy condition (20).

Derivation of the equations of general circulation.—The
foregoing relations supply material from which can now
be deduced the equations governing general circulation.

The dynamical equations of general circulation.—Making
use of the mean value properties (19) to (29), and taking
the time mean of relation (13) over an interval g, the
equation of continuity becomes

dptho , OpPo , OptWs _

P e O g 30)
where

_0('u")  o(pv’)  0(p’w’)

=% tToy t ez oo GD

The partial time derivative % disappears by virtue of

relation (20).

To derive the remaining equations is not so simple.
The manner in which the density is implicated in equa-
tions (14) to (16) would complicate the analysis seriously,
were it not for the fact that during any T-interval the
density deviation p’ from the wind density » is unques-
tionably but a small per cent of the latter. Consequently

We may write
1 p’
=—{1—-L-) . _......(32)
P P

This approximation gives, with (19), the relation

|

1 1 _
o= = —

p - p

1
@ e (33)
P
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The first of equations (14) can now be thrown into the
form 25

Ay » __10p,, 08, ,- 1
3 X = ax+§e b_:uo+€Au+A'+ ;: Tree--- 34)
where
,bu' ou' on’ a_a' 7/
A3=— ua-+'v -b—y+w—b—z +iegx'+€Au- (35)
—=7
I‘,,=p’%%-- S 1))
.. ] . dv, dw,
Similar expressions follow for T and T

The thermedynamical equations of general circulation.—
Writing equation (15) in the form

Pomr
p
and using relation (32), we have for the characteristic
equation of a wind
p=pHT+E. _ . __...._.__(7
where

1

E=Tplp’ - e m e e m— .-

--(38)

'The mean value theorems of general circulation (19)
to (29), together with (32), when applied to (16), yield
the energy equation

SAT +E=5c,‘—g +30¢,0,

2 b . \2 2 \?
o] " _ (3%, QWY _ox (%
+1%6, —2 '5¢Q+“ay° 22(6;)]
+—%—[w+n]+;c,n+§;!o_-_-- .3
where .
V=p' AT . oo .. .-(40)
oT’ ., 2T 0T
Q=u’-a—x—+v—5§+w—a—z—_-_-_____-(41)
2773 o' L ou'Y g% bu’)’ 42)
A=302-3 5;+W 2 5% IR (-4
and
M=p'® ... ... ...._-(43)
# Notation:

d 0,0, ,—d
‘dc"’“'ﬁ"’ n.ahao&v see equation (20),

~ _Oila, dEg , D
%=or top Yoz’

ouw’ oV, dw
[ ] 5;"' SF'\'—b?l ete.
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The constants of mass motion.—Laboratory determina-
tions have shown that, for air within the ordinary range
of pressures and temperatures,

x=0.000172
¢ =0.000056
¢, =0.169
J=4.18X107
€=0.133

These determinations have been carried out for nonturbu-
lent stream-line configurations, which should be expected
to indicate the true mass motion, and not time averages of
the mass motion. The substantial agreement of results
obtained by different methods for a variety of apparently
nonturbulent motions,”” and the extreme divergence of
results where turbulence of any order has been observed,?
seem to establish beyond a reasonable doubt that, within
ordinary ranges of pressure and temperature, (a) the
above values pertain to the mass nrotion proper, and (b)
that they are practically invariant for a given gas with
respect to all mass motions experimentally investigated.
According to the Kinetic Theory of Gases, they should be
practically invariant with respect to all possible mass
motions.

Approxrimations applicable to general circulation.—For
sufficiently large values of &, it is probable that the space
derivatives of the wind velocities are small. Since e

and ¢ are also small, aa,ndje is very small indeed, the

dilitation and divergence terms of the momentum equa-
tions are probably negligible compared with the gradient

_1lop
forces( S on

sipation terms of the emergy equation, compared with
the terms expressing the time rates of change of internal
and dilitation energy.

The equations of general circulation.—Equations (30) to
(39), therefore, after subscripts and bars have been
removed, assume the approximate form:

» ete., and also the conduction and dis-

A 20260y e
%=X—%¥+M+#;"""""@®

%’;= Y—%+A,+;},I‘, oo (aT)

‘%‘;=Z— L g’: +A.,+},I‘. .......... (48)

P=p HT+E oo ..(49)
p%%+§pcu0—ﬁ=—{—’1’ (BY+I0) +p cvn+5}0}----- (50)

2 C, @. S units; gram-calories.
7 See, for example, the viscosity determinations: 62, 63, 64, 68, 66, 67, 68, 69, %6.
n79, 71, 72, 6, 12.
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The turbulence functions.—The functions A and Al

are evidently tractions due to transfers of momentum
within the air, which impede or accelerate the wind. It

will be observed that ;},1‘ depends directly upon the wind

density and on the density and pressure deviations, while
A depends directly upon the velocity deviations alone.

A therefore is of the nature of a kinetic traction, and #I‘,

of a thermodynamic traction. It is reasonable to suppose
that these two forces which, though mutually dependent
differ essentially, correspond more or less closely to the
observed distinction between kinetic and convective
turbulence, in which case the distinction would prove
to be fundamental.

The function ® shows that the wind motion is not in
general a possible mode of mass motion; that is to say,
observed wind motions may show apparent deviations
from the law of conservation of matter; such deviations
are measured by ®.

The apparent elastic behavior of a wind may also be
expected to deviate from that of a perfect gas under
laboratory conditions (i. e., in nonturbulent motion).
In this case, the deviation is measured by the function X=.

Finally, ¥, 2, I and 6 measure the energy transfer
due to kinetic and convective turbulence in the wind.

It can not be emphasized too strongly that these
functions, corresponding to a given mass motion, will in

eneral vary greatly from one value of T to another.
%‘he tractions accompanying the wind represented by
figure 1, for example, unquestionabl
in character and magnitude from
the wind represented by figure 4.

Empirical determination of the turbulence functions.—
As should be expected from the nature of air resistances,
these turbulence functions are complex in the extreme.
To attempt to ascertain wind motion deviations and
deviation rates, and to find mean values of their powers
and products, would not be profitable, nor is it necessary.
The problem here is precisely analogous to the problem
of kinetic friction between rigid bodies, which latter is a
traction due to the interaction of molecules in the bearing
surfaces. That kinetic friction has been successfully
reckoned with and usefully applied is due to the fact
that empirical formulas have been invented, making it
unnecessary to ascertain the detailed motion of the
molecules. To investi%ate the turbulence functions of
the general circulation by empirical methods is therefore
an immediate and fundamental problem.

The principle stated at the end of the last section finds
explicit application here. The order of the wind under
consideration will determine the forms to be assigned
empirically to the turbulence functions, as well as the
values of such numerical coefficients as they may contain.
Turbulence laws governing a wind around an aéroplane
strut and defined for ten-secohid means, would doubtless
have little in common with turbulence laws governing a
general eirculation of the atmosphere defined for g-inter-
vals of thirty years.

Geographical coordinates.—For the purpose of investi-
gating the turbulence functions of general circulation, it
is advantageous to transform the equations of motion
by replacing the fixed, rectangular coordinate system
which we have been usi bﬁ’ a system of geographical
coordinates moving with the earth. Assuming rectan-

differ profoundly
ose accompanying
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gular axes fixed instantaneously at point P as in fig-
ure 5, then

w=r cos 0-(p+w), v=r 0, w=i________(51)*

where 0 is the North latitude of P, ¢ is its East longitude,
and r, its distance from the earth’s center. The dots de-

.Z .‘g
\'4
\ N
> EPOIe\
§§‘ P
& T E
» X
D, AR
cea | 8| 16
df =t —
Equator

F1a. 5.—QGeographical coordinates.

note time rates. If E is the eastward component of the
relative wind velocity at P, and N and V, the respective
northward and vertical components, then

E=rcos0-¢, N=rb, V=4#_______._(52)

Since the left-hand member of (45), if equated to zero,
ives the equation of continuity for the detailed motion
%fllot the average motion) of a continuous medium, the
transformation of the equation of continuity is readily
effected by computing the flux of such a medium into a
geographical volume element. The eastward flux is

__ 1 0(E)
rcosf Op drdt,

the northward flux is

1 o(pN)
-7 o0 drdt

and the upward flux is

-—a—(ngrdt.
r

#* The number @ is the angular velocity of the earth’s rotation: 0.00007292 radians per
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The total net flux, however, would be av_ {E’+ N’} +[2m E cos 0]— g-—l | p +Ay +ll‘v-. (60)
2p @& U por TR
—a'td‘rdt;
P=pHT+E .. ooeeeeo...(B])
consequently, the first term, plus the last three with
si sgeverde, give the desired function. pc"d_l_’_'_ 3 pc"{__.l_ @4_ 1 oN + a!}_@
he momentum equations are expeditionsly trans- di rcosb Op r 0O 'Or

formed by the use of Lagrange’s equations *
d (bT _oT_
dt

10p 1
= - —_ e A =Ty ..-.(53
Py EY (47 +A; + o i (53)

p Og;

where T is the kinetic wind energy per unit mass of air -

referred to the fixed, rectangular axes, and ¢, is .the co-
efficient of 3g; in the expression for the virtual work of the
external forces, that is due to a displacement é¢g; during

which the other two coordinates are held fast. The
absolute kinetic wind energy is readily seen to be
T=%{r’ cos? o-_(¢+a)=+wé=+ia} ________ (54)

and a simple comdputatiqn based on relations (51) and (54)
yields the desired equations. ) )

The time rate of cubical dilitation, which we shall now
denote by div g, where ¢ is the vector wind velocity, is
readily obtained by observing that, at any instant, u, v,
and w are in general functions of r, 6 and ¢, and that 7,
6 and ¢ are, in turn, functions of z, y, and z, so that the
variation in u due to a virtual displacement in the z-
direction is given by

ou, Ou. K Ou
b=, 0r + 35090+ bo-
But the z-displacement produces only higher order
changes in 6 and r, while it produces a variation in ¢
which is given by :
T cos 0-dp =0z,

u__1_oF

O rcosf Op

The partial derivatives of ¥ and w are computed in a
similar manner; consequently

1 2E, 10N, 2V

rcosf Op r O  Or

The equations of general circulation in geographical co-

ordinates.—The above equations may now be written
as follows®:

1 2(E) 1 d(pN) d26V)_

whence
SRR (+1;)

div ¢= ceeeae---(56)

rcosd Op 'r OF o P---- &7
%={Erlytan O—VT +[2mN sin 6—2=V cos 0]'
1 /1 op 1
~roos \p 5;)+AE+"3PE ----------------- (58)
‘%V={_$tan o—¥}+[—2mEsin 0]
1/1 op 1,
12 )+ bt T (59)

#73,p.343. Inequations (53), f=(1,2, 3), and qy=7, =0 and gs=¢.
nd E 9 N o ) ’

@™ roosd 0—6+7 5—,-\- |~ ELCICITITERITITILIEE cemsesaccansbuacstascntnaaconn (56a)
‘When this operator is applied to E, N, or V, the result will be referred to as a relative

acceleration. The absence of the partinl time derivatives is due to the hypothesis ex-
pressed by equation 790, and to the definition of general circulation.

- —{1;(0\11+11)'+pc,,9+ f,i’e} eeem - (62)

The quadratic terms in E; N, and V occurring in the
momentum equations are negligible conipaﬁad with the

accelerations of Coriolis,* provided that iy and;’ are

small compared with =,

Viscous fluid analogies.—The classical analysis of in-
tornal stresses set up by the motion of an isotropic,
homogeneous, continuous medium within the medium
itself furnishes an advantageous starting point for an
empirical investigation of the turbulence functions of
general circulation, to which we now return. The mo-
mentum equations for a thin layer of any continuous
medium enveloping the earth may be written as follows:3*

_ 1 /12p\,1(_1_JE, 1dE, oF,
I 7 Cos 0<p Y +p{1’ cos 8 Op +7'b_0"+ br}

1 [19p 1f 1 N, 12N, 2N,
""“;—(‘pa—o tolreor0op T r 08 o) ¢ 03
12p 1 1 2V, 13V, dV,

J"=—9_p57 +p{rcos0 d¢ r60+br}

where J is the resultant of the relative acceleration, the
small accelerations discussed in the last paragraph, and
theaccelerationsof Coriolis. If themedium is homogenous
and isotropic, and if the velocities and their space deriva-
tives are so small that their squares and products may be
neglected, then the tensions or compressions per unit
area within the fluid are

. 2u OFE
E,=\ div q+r c:s 900
No=rdivg+ 280 4w

Vo=Adivg+2, bb_:’
and the shearing stresses per unit area within the fluid

are 1 OoN 10
E"=N‘="{rcososg; ?6_0‘

o) 1 9
_b§+r cos 0 J¢p

% The terms inclosed in square brackets. See 74.

8 E, etc., are the internal stresses due to the viscosity of the medium. Each stress
lies in a plane perpendicular to the direction denoted by the subscript, and the direction
of the stress Is denoted by the capital letter. The depth of the medfum s assumed to
be small compared with the radlus of the earth.

The equations. for the motion of a viscid, continuous medjum in their classical form
were first suggested by Navier (75) and subsequently derived by Saint-Venant (76)
and Stokes (52 and 77). See also (29) and (78).

81 See (73, p. 554). The numbers A and x are the viscosity coefficlents for the medium.
If 3A4-2u=0, then the medium is such that uniform dilitation without shearing can
take place without dissipation ofenergy. Thereseems tobe no &ood reason for supposing
this relation to hold for viscous media in general; see (76, p. 1240); (52, p. 287%:\(77. . 16);
(80, p. 95); (81, p. 174); (78, Val. 1, p. 22); (82, p. 462). But the relation probably is true
for goses; see (79, p. 116, 193).

ceaea--(65)

Vo=E,~u{
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From the standpoint of the Kinetic Theory of Gases, all
of these stresses and hence the resulting tractions are due
to molecular transfers of momentum in the medium. In
the preceding analysis, we have seen that the wind trac

tions A and —]4, I are due to turbulent transfers of momen”

tum in the wind itself. But winds are anisotropic, at
least to transfers effected by convective turbulence, and
the velocities and their space derivatives are by no man-
ner of means so small that their squares and products
can be neglected. Equations (64) and (65) therefore can
not possi‘t?ly represent the internal mechanism of a wind
in a state of convective turbulence.

On the other hand, if a viscous fluid were anisotropie,
but (a) the tensions or compressions ‘due to the fluid
motion were proportional to the differential velocities,
and (b) the slgearing stresses obaved a similar law and
acted only in horizontal planes, then relations (64) and
(65) would read .

__2s OF

‘_rc%sl\f; O
N,=2#0N U (1.
V'=2“¥
E.=N,=V,=V,=0
N2

"“‘aﬁ' SO (. 1))
Ev—ﬂ'aa—r

Equations (63) show that the corresponding eastward
traction would be

2 ¥E OE
€ {r’ cos®* 00¢® Or
the northward traction would be
2 0N, N
¢ {F £ +‘a‘ﬁ}
and the vertical traction would be

o*V
where e=%, which is practically constant.

Finally, if the condition be imposed that the pressures
are small compared with the shearing stresses, it is evi-
dent from (63) that the eastward traction becomes

PE
€ brzl
XN  jee-e- (69)

. € —a—r‘,'_
and the vertical traction,

the northward traction,

Consideration of the motion 3 defined by the relations
E=ar, N=br, V=0, p=const.

will show that a medium satisfying conditions (69) is

% Thig motion satisfies the equation of continnity. The stream lines are
hewwi+a log B (tan 0+ sec 8)
where 8 Is a parameter varying from one curve to another.

MONTHLY WEATHER REVIEW.

321

vertically isotropic to momentum transfers producing
the horizontal tangential resistances (67).

The analogy of these systems of resistances may serve
as an advantageous starting point for the study of wind
tractions. Since the character of these tractions depends
fundamentally on the T-interval, we shall accordingly
assume, for the sake of definiteness, that the averages are
computed over intervals of thirty years.

For general circulation of this order there is no good
reason to suppose that the winds are anisotropic to the
action of kinetic turbulence. The analogy suggests that
internal stresses, due to turbulence of tlis kind, may be
linear functions of the differential velocities in the man-
ner indicated by relations (64) and (65);* in which
case Ag, for example, would be a linear function of the
divergence of the wind velocity ¢ and the Laplacian of E.
Such a law might reasonably be expected to hold for winds
having differential velocities as high as 0.01 centimeter
per second per centimeter. For higher differential veloci-
ties it might he necessary to express the stresses as homo-

eneous quadratic functions of the differential velocities.
%Iigher differential velocities, however, probably do not
occur in general circulation. )

Convective turbulence evidently obeys a very different
law. While winds may be isotropic to the action of
kinetic turbulence, they are certainly anisotropic to
momentum transfers due to convection. In fact, con-
vective turbulence for the most part must act vertically
across horizontal surface elements. The simplest and
probably the most plausible hypothesis is therefore that
suggested by relations (69), namely,

_rOE )
Te=por

_kO’N
I‘N_'p’ or?

Tv=0

SRR ¢ (1)

s

where u is a constant depending on T.

The functions ¥, 2, II, and 6 present very much the
same problem as the tractions. On account of the
extreme smallness of the coefficient of 6, it is probable
that kinetic turbulence can here be neglected. As to
the relative values of the terms in ¥, , and II, nothing
at present can be said. A practicable working hypoth-
esis 1s suggested by the analogy of Fourier's law of

8 The dynamical significance of the barometer.—It governed by the laws expressed b
(61), the total normal lnternal pressure per unit ar%a would bg v

Pe=—p+E,
Pyp=—p+ Np
Py=~p+ Vo

Theserelations throw some light on the dynamical significance of the barometer. Let
us imagine an ideal she ter conitructed on the princip es of a lantern, allowing indirect
contact retween the exterior and interlor air, but exc.uding the wind. The dimensions
of thisijealshe terare microscopicand of thesame order as those of thecell dr, in which
weshallsupposeit to be piaced. This shelter, which is stationary. ohstructs the wind,
thussetting up e xtraneous disturbances. influencing to an unkonwn extent the behavior
of theinstrumentsinside. Oneofthelatter,anideal, microscopic barometerregistering
the most rapid and minute pressure fluctuations, would, however, indicate the a &ro-
static pressure p in the shelter, for the she.ter would evidently eiiminate the aérodynamie
pressures Ee, Nx and Vy. Assuming that the turbulence set up by the she ter on its
exterior, together with the destruction of the mass motion in its interior, does not resu.t
in totally transforming the character of the mo ecular motion normally oceurrlnﬁ in the
goeometricai cell dr, the ideal instrument would yie!d an agproximnte va ue for the pres-
sure p of the classica: Kinetic Theory of Gases, as deiined by equation (11). Time aver-
ages of successive readings made at sufiziently near intervais wouid therefore give the
aérostatic wind pressure 5 as defined by equation (17).

In the actual case the ana ‘ogon of the microscopic she ‘ter is the closed room in which
the standard harometer is suspended. The !atter does not respond to rapid and minute
{)_ressure fluctuations (2), and consequent'y it ylelds at a sing'e rearlinghnn approximate

ime mean Correspon to an inleterminate time interval. When, however, succes-
sive readi of the stanlard instrument unier standard conditions are averaged over
a fixed ani de inite interval T, the resulting means a‘pg?rentlv afford a more or less
rough approximation to the true afrostatic pressure p of the wind. (See egimtion (an).
How nearly this approximation represents the true valueis a question which would well
repay experimental investigation. .
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heat conduction in a continuous, homogeneous medium,
namely, that convective energy transfer through a thin
wind stratum is directly proportional to the temperature
difference of its boundaries and to the time, and in-
versely proportional to the thickness of the stratum. If
to this 1s added the assumption that transfers occur in
the vertical direction only, the corresponding turbulence
function will be proportional to

2
%2711(71)

or else to -
pgr—,------------------(72)

The functions ¢ and E occurring respectively in the
equation of continuity and in the characteristic equation
are at present entirely problematic, but it is probable
that, as the anology of viscous motion suggests, these
functions may play an unimportant réle.

Studies of resistance functions,.—The science of the
internal mechanism of winds is a new one. It opens
a wide field for research, the results of which can not
fail to prove of the utmost interest and utility. At-
tempts gla.ve already been made to devise resistance
functions and to evaluate the corresponding constants.
All of these attempts have been made under the assump-
tion of a general air drift differing from the detailed
fluid motion; but in no case has the exact nature of the
drift under consideration been defined, nor has the all-
important question of wind order been investigated.
uldberg and Mohn ¥ assumed that the internal re-
sistance Fg per unit mass of air was proportional to W,
the horizontal wind velocity: .

F= W

and that the resistance acted directly against the wind.
Neglecting relative accelerations and the small quadratic
terms in E, N, and V, the two hydrod_gna.mical equations
corresponding to (58) and (59) yield the relation

1 a—p=2m W sin 6 F,

p 08
where s is the direction in which the pressure ngdient is
steepest. Since the ‘‘deflective force’’ 2 @ W sin 6 acts
normal to the path and, in the Northern Hemisphere, to
the right, it folYows that 3

10p .o
—;as cCosS a=u w

op

1 e eno---(74)
—-;asm a=2c Wsin @

Consequently .
#=(2 o sin 6) cotan a.

Values of the deflection angle obtained from weather maps

gave
0.0002 > u > 0.00008.

To check the resistance law on which these results de-
ended, advantage was taken of the fact that sufficient
ata were at hand to over-determine equations (74). The

MONTHLY WEATHER REVIEW.

Juory, 1918

ratio of Wto %’ was computed from previously obtained

values of , and, as was to have been expected from the
nature of the resistance function, the results did not
check well with observations.

North

A

F1g. 6.—Guldberg and Mohn deflection angle, . The direction s is that in which the
gradient force i3 at & maximum.

Oberbeck * assumed that resistances obeyed the law
F= %Aq’

where u was a constant depending on the motion.
kerblom,* in his researches relating to the winds over
Paris, assumed that

Fo=¥ o’E p O'N

o oF p o

where, as with Oberb_eqk, p was a constant depending on
the internal irregularities of the average drift. Neglect-
mj accelerations, and imposing restrictions on the
velocities, he found that

=058 |

cm. sec.
Hesselberg and Sverdrop 4 assumed that

Wwo _ W:l.
500

The first term was introduced under the supposed neces-
sity of representing separately the traction of the upper
layers upon the lower ones. The second term was
intended to represent the tractions at the ground. The
difference quotient

’ FN=

F=x -k W,

Wm— m
500 _
2
was evidently a rough approximation not to %—:,—Ybut

to %—271 and as here used was equivalent to the assumption

of horziontal shearing stresses in the upper air which are
proportional not to the differential velocities but to the
velocities themselves. It is difficult to see how such a

8 (70. Seealso 83.) Stokes pointed out In 1845 that  The main part of the resistance
of fluids depends on the formation of eddies.” 53, p. 99.
% See fig. 6. The angle « was called the deflection angle.

% 84. See also the memuofirs of Boussinesq, 85 and 86.
©71, See also 87, ’
11 72. See also £8.
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law could prove valid. Possibly with this in mind,
Hesselberg and Sverdro]l) carried out another determina-
tion depending on the law already suggested by Aker-
blom. xin this case the second derivatives were obtained
fmzl obzerv?tions. 4  odd )

study of a very restricted type of eddy motion super-
imposed Kpon a horizonta) air dl'El)ft led Taylor ¢ to atﬁ)pt
for horizontal tractions the law assumed by Akerblom.
Similar considerations led to the assumption of a law
to the effect that the transfer of heat by turbulent
motion is proportional to

0%
o7’

where 6 is the potential temperature of the air at altitude
2. This law would necessitate either a horizontal down-
ward transfer of energy by turbulence in the isothermal
region, where the potential temperature increases with
altitude, or else it would necessitate a strong variation
with altitude of the proportionality factor. Since obser-
vations indicate distinctly a state of nonturbulence in
the isothermal region,*® the former alternative is unten-
able. The latter alternative imposes upon the propor-
tionality factor the burden of an entirely unknown
function, and therefore yields no additional information
as to the general circulation.

These various studies seem to be siﬁniﬁcant for the
problem of general circulation (a) in that they contain
proposed resistance laws which may prove useful as
working hypotheses, and (b) in that they illustrate the
importance of a fundamental principle which, curiously
enough, seems to have been entirely overlooked except
by (§uldber and Mohn, namely, that empirical deter-
minations of resistance constants are meaningless unless
sufficient data are brought to bear to over-determine the
equations of motion, and so to ve;.rg‘y the empirical resist-
ance laws on which the results depend. It should be added
that empirically determined results should be expected
to hold only for definite vaules of T corresponding to
the order of the winds under investigation.
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